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1. TINTRODUCTION

A great amount of research has been performed for continuous life
distributions. However, very little has appeared in the literature for
discrete failure models. Discrete failure dats arise in several common
situations: (i) A device can be monitored only once per time period (an
hour, a day, etc.), and the observation taken is the number of time periods

-successfuly completed -prior to the failure of the device, (11) A piece of
equipment may operate in cycles, and the experimenter observes the number

of cycles successfully completed prior to failure., Many other examples may

be cited.

In situations wvhere the observed data values are very large, in thousands
of cycles, etc., & continuous distribution can be an adequate model for the
discrete randon variable. For example, the Birmbaum-Saunders [3) distribu-
tion arises in comnection with fatigue failure due to bending of metal alloys.
Bowever, when the observed values are small, a continuous distribution may not
adequately describe a discrete random varisble, and an appropriate discrete
failure model is desirable.

A few results on discrete life distributions have appeared in the litera-
ture, Kalbfleisch & Prentice [5, Ch. 2] briefly discuss discrete failure
distributions that may be obtained froz well-known continuous distributions
such as the exponential or Weibull. Langberg, Leon, Lynch & Proschan [5,6]
examine properties of the classes of discrete DFR and DFRA distributions.
Salvia & Bollinger [9] consider the properties of discrete hazard functions
and analogies with the continuous case. Barlow, Bartholomew, Bremner & Brunk

(1) give a nmonparametric estimate of an IFR function using isotonic regression

. e A e e m_ e v~ ot A B oAt m PR 2 - CRPE Y [V S S S N T DU




.......................

techniques. Their estimate is easily modified for DFR functions and to allow

for censoring.
The purpose of this paper is to further examine discrete hazard functions

in & parametric setting. Estimation for the discrete hazard functions given

by Salvia & Bollinger [9] will be discussed for both unceamsored and censored
lifetime dats in Section 2. In addition, some other parametric discrete
i “— ~failure models will bé& proposed and estimation for them will be studied in

Sections 3 and 4. It should be noted that meaningful discrete parametric s

models generally present difficult estimation problems and may mnot be founded ‘
i on a theoretical basis [5, p. 36]. However, such models are still quite .‘....j

important for discrete failure data, "“*
: Notation
- MLE Maxi{mun Likelihood Estimator ____
F IFR Increasing Failure Rate o
DFR(A) Decreasing Failure Rate (Average)
h £ pui{k}) = PriX = k) =i
g 5, s£{k} = Pr{x 2 k) T
i discrete hazard, ik/sk -
hj kl,....kn randon sample of n observations on a discrete random variable X ' ‘
E a,a a parameter and its MLE -"1
: F 8 cumulative distribution function '
i E(X) expectation of the random variable X : _: _
: L, 0L 8 likelihood function and its natural logarithm ]
E 2. THE MODELS OF SALVIA AND BOLLINGER '
h Salvia & Bollinger [9) developed some results for discrete fafilure models
analogous to the theory of the continuous case. Some of their results follow, .—1
g 3
b ]
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The discrete hazard rate (or failure rate) is related to the pmf dy n

h - fk/(fk+fk+1 + ... ) and fo - h hl(l-h ) N 'Jl

Ry

fk - hk(l'ho)(l.hl) ves (l-hk_l). SInilarly the discrete Sf is o

5 = (l-ho)(l-hl) ove (l-hk-l) for k=1,2,... ., The mean life, if it exists, ;i;j

© ® kel L

1s E(X) = ] 5 " 1 n (l-h ). It should be moted that using Fort i
k=1 k=1 j=0

{4, p. 32-33], E(X) exists if there exists an € > 0 and an m such that

for k > m, 'ﬁhk/u-hk)‘j S1+e€. If for k>m, k[h /(1-h )] S 1, then

; E(X) does not exist. Some other results analogous to continyous failure models .7;5
were also given in [9]) for certain situations. For example, for a distribution with :
ﬁ IFR, ho s hl < h2 Ceaey Sk < (l-ho)k and E(X) s (1-h0)/h0. These inequalities ;;;i
are reversed for DFR distributions. ?ffj
Salvia & Bollinger [9] also gave illustrations of discrete parametric j
failure models for the constant failure rate, IFR, and DFR cases, .;;;J
s. Constant Failure Rate. For h =c, a constant 0<cs1 for all T
k=0,1,2,¢c00, fk = c(l-c)k. a geometric distribution which is the discrete Efj%
analog of the exponential distribution. We will give the MLE of c¢ for the 1i;§
three cases of a complete random sample kl,....kn from fk' a type II censored 77_i
s:Qple,and a type 1 censored sample,
For a complete randon sample, the log-likelfhood is £n L(c; 1....,k ) =
n fnc+ I k £0(1-c), which is uniquely maximized by ¢ = n/(n + z ky ). ?‘fj
Bence, :hi-rln.z of s, is sk = -0, k=0,1,2,... . e
For a type Il censored sample, denote k(l) - nin{kl.....kn},k(z) = :‘:t
next smallest of {kl,....kn}, cees k(r) = rth snmallest of {kl.....kn). e
vhere some of the kl" may be equal. If rim items fail at or before
; k(t). »=0,1,...,0~7, the log-likelihood is
: R
i 'i’{




Ra L(c; kl""'kh) = (r+m)in ¢

o

+(] &

& 1) + (n-rdn)(k(r)-bl))l.n(l-c)

which is uniquely maximized by

PS 4o
c= (rtm)/[(r4m) + ] &

+ (o=-r=m)(k,_, +1)]. (2.1)
i=1 ()

(1)

For a_type I censored sample, where the life test isp terminated after a

fixed numzber of “cycles" or time units T, the log-likelihood function is

r
£n L(c; kl.....kn) - 2 in £ + (n-r)in ST' vhere r 1is the observed number

k
i=] (1) -~
of failures by the end of T cycles. The MLE c for this case is similar to
(2.1) and is omitted. 1In fact, the expressions in &n 1 for arbitrarily
right-censored data, vwhich includes type I and type 1I censoring, have the

same general form for this or any of the discrete models which follow.

b. An JIFR Distribution, For hk = 1 - ¢/(k+1), k=0,1,2,,.., 0 S c <1,

£ - (k=c+1)é¥/(k+1)!, an IFR distribution,

c. A DFR Distribution. For hk = c/(k+l), k=0,1,2,..,, 0 < c 51,
fk = c(l=c)(2=¢)...(k=c)/(k+1)!, a DFR distribution.

We have found that these IFR and DFR distributions are not sufficiently
flexible to fit & wide variety of settings. For exanple; for the IFR distri~
bution the MLE : = ] 4f all ki's > 0, regardless of the values of the ki‘s.
For the DFR distribution E(X) exists only for c=1, Generalizations of these
distributions and estimation results sre given in Section 4.1.

3. DISCRETE FAILURE MODELS FROM CONTINUOUS DISTRIBUTIONS
Kalbfleisch & Prentice [5, pp. 35-36] indicate that failure time dats are

sometimes discrete either because of the grouping of continuous data 6ue to

-
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imprecise measurement or because time itself 1s discrete. They also give
discrete distribdbutions based on grouping data from continuous distributions
into unit intervals. For example, if we begin with the Weibull distribution
wveif (Bt;a) =1 - cxp(-(Bt)u). t 2 0, then the discrete distribution obtained
by setting £ = weif (B(k+1);a) - veif (Bk;o) = exp(-BK)") - exp(-(B(+1™),

k=0,1,2,..., 1s 8 distribution for grouped failure data. If o =1, fk

becomes fk 'ngp(-ﬁk)(l—exp(-s)) fﬂfﬁ}-c)k. k=0,1,2,..., where c = 1-exp(-311“m

vhich 1s the geometric model (a) of Salvia & Bollinger [9]). If a <1, a
digscrete DFR distribution is obtained, and if a > 1, fk is an IFR distribution.

More generally, it is easy to show that if a continuous IFR(DFR) distri-
bution is used to generate & discrete distribution fk' then fk is also
IFR(DFR). However, the class of coatinuous distributions giving rise to discrete
IFR, DFR, or constant fafilure rate distributions is mot restricted to being
IFR, DFR, or constant failure rate, respectively. For example, the pdf g(x) =
£ exp(-Bx) + 2 exp(-B(k¥5)) - 2 exp(~-B(k+l)), k s x S k + ¥, and g(x) = 0,
k+¥<x < k+l, k=0,1,2,... (and g(x) = 0, x < 0) does not have constant
failure rate, IFR, mor DFR, yet f, = exp(~B8k) (1 -~ exp(~8)), k=0,1,2,,.,, which
has constant failure rate, as before.

4. SOME PROPOSED DISCRETE PARAMETRIC FAILURE MODELS

We propose some more general discrete failure models than those of Salvia
& Bollinger {9). First, a generalization of their IFR and DFR models which were
mentioned in Section 2 is given and maximum likelihood estimation of the para-
aeters is investigated. Then a discrete failure model which can have increasing,

decreasing, or constant failure rate according to the values of one of its

parameters is presented, and estimation of the parameters is considered,

LS
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E It should be noted also that some of the well-known distributions, in
P addition to the geometric distribution, may be useful in modeling discrete —-‘
E 1ife data. For example, it may be sasily shown directly, or using the results ‘
' on pp. 76-77 of Barlow & Proschan [2], that the Poisson distribution 1s an
i IFR distridbution, .Hi

: 4.1 Generalized Salvia and Bollinger Models :

:: - _The IFR and DFR.models of Salvia & Bollinger {9] given in Section 2 will

'_ be generalized by the addition of a second parameter a. When a=1 the :
’ models reduce to those in Section 2, When a=0 the models reduce to the
’ constant failure rate model of Section 2,
i The IFR Case (Model 1) :
let h =1- c/(ak+l), k=0,1,2,..., (0 Sc s 1, 0 Sa). The puf is 7
£, = (ak+l-c)c®/ I (Ja+), k=0,1,2,.00, and the SE is
T o
Sk ec/ 4a0 (aj+1), k=1,2,... . As G =+ =, the model approaches the Bernoulli 1
model with fo-l-c and fl-c.' As c¢ = 0, the model approaches the degenerate
' distribution with fo-l. The parameter ¢ = Pr(x >0} and a 4s a shape ::
PF paraneter. The pnf is monincreasing in k if c > X% and a < (c-1)2/ (2¢-1)
or if ¢ s ¥. Otherwise, the pmf increases and then decreases in k. Figure l :
L!' shows the punf's for some values of a and c.
L We now consider the estimation of the parameters from an observed random w-—‘

sample kl""’kn from fk‘ The log-likelihood function is
n n n k D
F %ol = ] k, fnc + ] fa(ak +1-c) - ] I* 2a(s0t1). (4.1.1) __.q
- i=1 i=1 i=1 4=0 o
E Three cases will be considered. 1
-
g
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Case i: a Known. 1If all k1 « 0, then £alL = n Ln(l-c), which gives

: = 0, Next, if at least one ki >0, from (4.1.1)

2 oL - 1 ¥ /e - 3 V(ok +1-c). (4.1.2)

¢ 1= 1=1
2

Then .3_2 RoL < 0 for all 0 <c <1l. It follows from examining the limits
ac

of (4.1.2) as ¢+ 0 and c -+ 1 that there 15 a unique value ¢ which

maxinizes (4. 11). 1fall k >0 and asx { (1/k) / Z k.o then c=1.

- - —_— =1, 1 4 —

Otherwvise, c may be approximated by solving Ty fnl = 0 for c¢ wusing
the Newton-Raphson procedure.
Case ii: ¢ FKnown. If all ki's = 0, then (4.1.1) does not involve a.

HBence, G is arbitrary. If at least one ki > 0, then %5 &nl = 0 may or

may not have a8 solution for a.

Case iii: Both @ and ¢ Unknown. If all ki's = 0, then ¢=0 and a

is arbitrary. Next, if B,

c = (n—no)/n and 0 = + ®, Finally, if at least one ki > 1, it is difficult,

ki's = 0 and the remaining ki's = 1, then

if not impossible to show that unique MLE's always exist. However, it is
possible to find the unique value of ¢ which maximizes (4.1.1) for fixed a.

A line search of the variable G can then be performed to obtein an approximate
maximuz for (4.1.1).

For the cases of type I and type II cemsoring, the MLE's for this model
are obtained in the same manner. For type I censoring after T cycles, the

log-likelihood function is

2ol = fn(c) [(n-r) + { kegy) + { 2o [ak ,y +1 - c]

(4.1.3)
r 7-1
) 2(1) 2a(aj+l) - (o-r) ] 2a(as+l).
i=] J-o j-

r_‘.
v',"'

2
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For type 1I censoring with rm failures at or before k(r)' 2=0,1,...,0~7,

the log=-likelihood is

T =T
fol = Mn(c) [(om-1) (k(y#1) + 121 kegy) + 121 2o(ak 4 +1-c)
(6.1.4)
ot k k
- 7 1M gagse+1) - (ow-r) I gn(sotn).
1=1 §=0 4=0

The derivatives of (4.1.3) and (4.1.4) have the same behavior as those of (4.1.1),

s0 the MLE's may be obtained numerically as described for uncensored data.

The mean lifetime for this model from the formula in Section 2 is

= k-1
E(X) = ] & 1 (aj+l) which may be easily calculdzed to
k=l  §=0

any desired degree of accuracy by summing an appropriate number of terms of the
series. An estimate of E(X) 4s found by replacing ac and ¢ by a and c.

The DFR Case (Model 2)

Let hk = c/(ak+1l), k=0,1,2,.0., (0 < c <1, 0 sa). The puf 1s fo-c
and
k-1 k
fk =c I (Jatlec)/ 0 (Jot+l), k=1,2,...,
3=0 §=0
k-1 -1
and the Sf 1is sk - Jno (aj+l-c)/(aj+l), where jno =1, As c + 1, the

model approaches the degenerate distribution with fo = 1, The parameter
c = Pr{X=0)} and a 4is a shape parameter. The pnf is decreasing in k for
all a and ¢, Figure 2 shows the pmf's for various choices of @ and c.

We mow consider the estimation of the parameters from an observed random

sample kl""'kﬁ from fk' The log=-likelihood function is

n ki-l n ki
fal=minc+ J J° fn(jotl-c) - ] §° 2a(jatl), (4.1.5)
1=1 3§=0 1=1 3=0

=1
wvhere 2 0.
3=0

*
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The results for maximizing (4.1,5) are analogous to the IFR case. :f © 4s Do
S -~ —q

known, there is a unique O < ¢ s 1 which maxinizes (4.1.5). Thic ¢  can
be approximated by the Newton-Raphson procedure. If ¢ 1s known, then :..
-3% 2nl = 0 may or may not have a solution, If both & and ¢ are unknown, j?f:
L

ther an approximste maximum for (4.1.5) is found by performing a line search r
- S

on @ with ¢ = €q* . __j
—_— For the cases of type 1 and type-Il censoring the MLE's are oltained in -— L
the saze manner. For type I censoring after T cycles, the log-li:elihood ©

function is

r k, =1 k
toL = rtnc + J [ IV ma(ori-o) = I Vga¢ion))

i=] §=0 =0
(¢.1.6) -
T-1
4+ (o-r) ] fn[(aj+l-c)/(a3i+l)].
j=0
Yor type 1] censcring with wxim failures at or before k(r)’ w=0,1,...,0-1,
the log-likelihood is
2ol = (wtr)foc + J [ ] fo(jatl-c) - } '/ fa(dol)] o
i=1 3=0 §=0 Lo
(£.1,7) _—
4+ (o-m-r) ]’ fa[(aj+l-c) / (aj+l)],
=0
The MLEs may be obtained numerically as for uncensored data.
Using the results in Section 2, E(X) existe if ¢=1 or 1 >c>a I
Ei‘ and does not exist {f ¢ s a and c¥l. If c > a, then the mean Jifetime .
} may be easily spproximated by summing an appropriate nucber of terus of ’
w© k-1 o
N E(X) = ] T (ai+l-c) / (oj+1). An estimate of E(X) 1is found by replacing
- k=1 3=0 . ,
- candc by O andc. g
- ]
' -
- - N
o
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4.2 A Discrete "Weibull Hazard" Model (Model 3) 3fﬂ
Let hk -] - cxp(-c(k+1)°). k=0,1,2,.0., (¢ > 0, - ® < g <®), SGince
this hk 48 eimilar to the Weibull Cdf, we will call this the discrete L;:
Weibull hazard wodel, or Model 3. Thus the pmf is
fk e (l-exp(-c(k+l))) I exp(-ci’) £ oo 4
i=] o
k a
= exp(-c )} 1% (1-exp(-c(k+1)%)), k=0,1,2,...,
S R L) O - - —
and the Sf 1is Sk = exp(-c z i), k=1,2,..., where z Z 0. hE
Do)
Note that for a=0, this model reduces to the constant failure rate model S
of Section 2, For a > 0, the distridbution has IFR, and for a < O, it has —
=
DFR. Thus, this discrete model is quite flexible with respect to choice of .F-j
failure rate, analogous to the Weibull distribution in the continuous case, ;z¥
The paranmeter G 4is essentially a shape parameter and ¢ is a "spread" i
-
parameter. For small values of c, the probability is spread out in the tail S
of the distribution, whereas for large c, most of the probability is at k=0.
For example, for c=5, fo = 0,9933, For a < 0, the puf is always decreasing 0l
in k., For o > 0, the pnf is either decreasing or first increasing and then '.‘:
decreasing in k., In particular, for small ¢, the largest fk is at large :Efa
values of k. For example, for o = 0.5, ¢ = .01, the largest value of fk f: -
is at k=13, Figure 3 shows the pmf's for some values of G and c. It appears ';“;
that for various values of ¢ > 0, G in the range -1 s a s 1 15 sufficient E
to describe many IFR, DFR, or constant failure rate discrete distributionms. e

We now consider the estimation of the parameters from an observed random

sample kl.....kn from fk' The log-likelihood function is

2 f 2n[1-exp(-c(k,+1)%] f If‘ e (4.2.1) -
nl = nll-exp(—=C +. - C . ok
g=1 1 ge1 j=1 ""”1
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. Three cases will be considered.

' Case i: G Known, If at least one k:l. > 0, from (4.2.1) :*
x° fal = f (k4% / [exp(e(k+D)® - 1] - f lf‘ 3%, (4.2.2) 2
h: i=] i=] j=1 :
! Then, 12-2- RnlL < 0 for all ¢ >0, and as ¢ + 0, (4.2.2) approaches. + =, *_'
‘ | vhereasa:s c+» (4.2,2) approaches s pegative constant, Hence, there is
t B & unique MLE for c. This MLE c_.n_be found by solving __a—: fol = 0 numer:lcal}y; _

' using Newton-Raphson iteratiom. :—-
%: 1f k =0 for all i=l,...,n, then falL does mot involve o and is
{. an increasing function of c¢. Hence, :- + o and ; is arbitrary. These
i estimates correspond to ;0 =] and Ek -0, k>0, :’:
| Case 1i: ¢ Known, For any fixed value of ¢, it can be shown that there ;

exists at least one solution to -:? L = 0 for o 1if at least ome ki > 1.
i The solution may mot be unique. If all ki = 0, £nl does not involve a, : :

-~
so a is arbitrary. Finally, if all ki" = 1 or some k:l." = 0 and the
remaining ki'. = 1, then there may be no finite value for a.

Case 1ii: Both o and ¢ Unknown. If at least one ki > 0, it is difficult,

MR LR S

if not impossible, to show that unique MLEs always exist. However, it 1is

Sheh

' possible to find the unique values of ¢ which maximize (4.2.1) for fixed N
values of a using the Newton-Raphson procedure for sclving a—z ol = 0. ____
A line search on the variable G can then be performed to obtain an approximate -
maximun for (4.2.1).

For the cases of type I and type II censoring, the MLEs for this failure ____

model are obtained in the same manner ss just described. For type I cemsoring

after T cycles, the log-likelihood function is

.......................................
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Lol = f ln[l-up(-c)(k( )+1)“)] -c f f(t) ju
i=) 1 i=l §e1

I a
-cln-r) J 3. (4.2.3)
i=1
For type Il censoring with =rim .fa:llures at or before k(r)' ==0,1,...,n-1,

the log-likelihood is

Y T [ a t‘{" f(i) a
nL = fn[leexp(=~c(k, \*1) )] - ¢ - 3 A
" qa —) g=1 41 _——
kK, +1
(r) ",a
j [ ]
jzl

- c(n-r-m) (4.2.4)

The derivatives of (4.2.3) and (4.2.4) have the same behavior as those of

(4.2.1),80 the MLEs may be obtained numerically as described for uncensored data,

The mean lifetime for this model is E(X) = .i exp(-c fja) By the
results referenced in Section 2, E(X) exists fork:il c > Oj-ind a> =1
and does not exist vhen o < =1 for any value of ¢ > 0. For a = -1, E(X)
exists wvhen ¢ > 1 but does not exist for ¢ s 1, When E(X) exists, it may
be easily obtained to any desired degree of accuracy by summing an appropriate
nunber of terms in the series. An estimate of E(X) can be found by using
;and :. For a < 0 (DFR), a lower bound for E(X) is exp(-c)/[l-exp(-c)],
which can be estimated by replacing c with :. For o > 0 (IFR), this quantity

is an upper bound for E(X).

5. EXAMPLES
Nelson [8) reported times to breakdown in minutes of an imsulating fluid
subjected to various test voltages. We took as an example the failure times
at 36 & and reduced sach observation to the next lowest integer, which corres-
ponds to observing the life test once per minute and recording the lifetime as

oy 4f the breakdown occurred in time interval [k,k+l). Relson [8] assumed

a® et . DTV St e A e < PR . .
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an underlying Weibull distribution for the continuous failure times. As
examples, we will consider estimation from this data for the “"discrete Weibull"
model of Section 3, Models 2 and 3 of Section 4, and the nonparametric DFR
model of Barlow, Bartholomew, Bremner, and Brunk [1].

The data that we use, as adapted from Nelson {8) for 36kV, are:

0,0,0,0,1,1,2,2,2,2,3,3,5,13,25 (minutes before failure). The computed MLEs of

paraneters, pmfs, Sfs, discrete hazards, and mean lifetimes for the various

models are shown for comparison in Table 1. A hazard plot of these 15 observa~-

tions indicated that the life distribution 4s DFR. This is supported by the
MLE of O 4n the "discrete Weibull hazard" model (Model 3) which vas ; ® -.391,
It can be seen fromw Table 1 that the monparametric DFR model yields the
largest value for £nl. This is to be expected since maximization of £nL
is done over all DFR distributions (including the other models in Table 1).
The nonparametric model has two drawbacks, particularly when the number of
failures is small. First, the estimate of the hazard function, ;k' decreases
at k only if there is an observed failure at k. Secondly, for k larger .
than the largest failure time, gk is not uniquely defined. For the purposes
of Table 1 ;k H] ;25 for k > 25,
The three parametric models yield similar estimates of the failure distri-
In terms of

bution. We make the following distinctions among the models.

f2nl, Model 2 performs the best for this data. Calculation of the estimators

1is more complicated for the discrete Weibull model than for Models 2 and 3.
Model 3 and the discrete Weibull model are more flexible than Model 2 since they
allow both IFR and DFR distributions. These proposed models provide a large

class of distridbutions for fitting discrete failure data.
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